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ARTICLE INFO ABSTRACT
Article history: The cerebral cortex is a critical target of the central noradrenergic system. The importance
Accepted 20 January 2016 of norepinephrine (NE) in the regulation of cortical activity is underscored by clinical

findings that involve this catecholamine and its receptor subtypes in the regulation of a
large number of emotional and cognitive functions and illnesses. In this review, we
highlight diverse effects of the LC/NE system in the mammalian cortex. Indeed, electro-
physiological, pharmacological, and behavioral studies in the last few decades reveal that
NE elicits a mixed repertoire of excitatory, inhibitory, and biphasic effects on the firing
activity and transmitter release of cortical neurons.
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Neocortex ) . At the intrinsic cellular level, NE can produce a series of effects similar to those elicited
:ensory—motor Integration by other monoamines or acetylcholine, associated with systemic arousal. At the synaptic
tress

level, NE induces numerous acute changes in synaptic function, and 'gates’ the induction
of long-term plasticity of glutamatergic synapses, consisting in an enhancement of
engaged and relevant cortical synapses and/or depression of unengaged synapses. Equally
important in shaping cortical function, in many cortical areas NE promotes a character-
istic, most often reversible, increase in the gain of local inhibitory synapses, whose extent
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cAMP, cyclic adenosine monophosphate; CaMKII, Calcium calmodulin kinase type 2; CNS, Central Nervous System; CREB, cAMP
Response Element Binding protein; GABA, y amino-butyric acid; GABAAR, GABA receptor type A; GIluR, glutamate receptor;
GTP, guanosine 3-phosphate; G-protein, GTP-binding protein; HCN, hyperpolarization activated cyclic nucleotide gated (cation
channel); HPA, Hypothalamus-Pituitary-Adrenal gland (axis); LC, Locus Ceruleus; LTD, long-term depression; LTP, long-term
potentiation; mPFC, medial PFC; NE, norepinephrine; NMDA, N-methyl D aspartate; NMDAR, NMDA receptor; OFC, orbitofrontal
cortex; PFC, prefrontal cortex; PLC, phospholipase C; PKA, protein kinase A; PKC, protein kinase C; PFC, Prefrontal cortex;
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and temporal properties vary between different areas and sometimes even between

cortical layers of the same area.

While we are still a long way from a comprehensive theory of the function of the LC/NE
system, its cellular, synaptic, and plastic effects are consistent with the hypothesis that
noradrenergic modulation is critical in coordinating the activity of cortical and subcortical
circuits for the integration of sensory activity and working memory.

This article is part of a Special Issue entitled SI: Noradrenergic System.

© 2016 Published by Elsevier B.V.
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1. Introduction oscillations and sleep (Rajkowski et al., 1994), LC activity and the
consequent presence of a cortical and thalamic'adrenergic tone’ is
1.1. General properties characteristic of wakefulness (Aston-jones, 2005). Within the

The biogenic amine norepinephrine (NE, or noradrenaline)
has long been identified as having an important role in
shifting the mammalian organism from a relaxed or dormant
condition to a responsive, excited and alerted state. The
effects of NE appear to vary depending on the brain area,
layer, cell type, and even on the timing and duration of its
presence in the extracellular space in the brain.

NE is synthesized in the CNS almost exclusively in a set of
brainstem melanin-containing nuclei denominated collectively
Locus Ceruleus (LC) (Descarries and Droz, 1970) and adjacent
structures (Robertson et al., 2013), with extensive diffuse ascend-
ing and descending projections to virtually all the central nervous
system (CNS), including the entire neocortex (Aston-jones, 2005).
This system exerts a crucial role in the circadian regulation of
alertness, arousal, and overall performance (Aston-Jones et al,
2001). While LC inactivity is associated with thalamo-cortical

wakefulness state, two modes of activity of the LC cells are
discernible: a “phasic” and a “tonic” mode. Among other properties,
phasic LC activity is related to stimulus salience (Aston-Jones and
Bloom, 1981), and/or to the outcome of decision processes in tasks
that require selective attention, whereas the tonic mode appears to
be related to the search of alternative strategies during a beha-
vioral disengagement caused by persistent failure to receive an
expected reward (Aston-jones and Cohen 2005a). In this review
we will summarize the experimental evidence revealing simila-
rities and differences of the short- and long-term cellular and
synaptic effects of NE on neocortical circuits.

1.2. The Locus Ceruleus—Cortical axis

The neocortex is a major recipient of LC ascending axonal
branches, together with numerous other CNS areas includ-
ing the amygdala, the thalamus, the hippocampus, the
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hypothalamus, the bed nucleus of the stria terminalis, the
colliculi, and the cerebellum (Simpson and S, 2007). Together
with the neuroendocrine hypothalamus-pituitary-adrenergic
gland (HPA) axis, the LC is part of the mammalian stress
response system. As a global neurotransmitter system, its
activity seems to be coordinated with the activity of other
global modulators in a still largely unexplored fashion. Such
coordinated responses have been related to arousal and atten-
tional processes (Aston-Jones and Cohen, 2005a). Besides this
function, it has been shown that NE also modulates a diverse
set of central activities spanning from working memory to
decision making (Arnsten and Goldman-Rakic, 1985; Arnsten
and Jentsch, 1997; Young et al, 2006), and from executive
functions to sensory processing (Arnsten et al., 1988; Arnsten
and Contant, 1992; Aston-Jones et al., 1992). The LC-NE system
has recently been proposed to act as a switch in CNS circuits
employing different energy levels in goal-oriented activity
(Bouret and Richmond, 2015; Hofmeister and Sterpenich,
2015). While the exact mechanisms used by the noradrenergic
system to accomplish these diverse functions are far from being
completely understood, the biologic and systemic relevance of
the noradrenergic system modulation is clearly evidenced by
clinical data suggesting that even modest changes in noradre-
nergic function-induced by pharmacology, anesthesia, or other
means (e.g. electrical stimulation of ascending branches of
autonomic nerves)-dramatically affect behavior and systemic
‘well-being'.

Both cortical and sub-cortical regions are densely inner-
vated by noradrenergic inputs. Some non-cortical areas
(amygdala, hypothalamus, brainstem, cerebellum and mid-
brain) display a high density of adrenoceptors (Papay et al,,
2006) and are importantly involved in a large group of
noradrenergic-mediated behavioral responses (Kaneko et al,,
2008). The integrity of the cortical branch of the noradrenergic
system appears, however, to be a determinant of pathophy-
siology and behavior, as important as subcortical noradre-
nergic innervation. Evidence supporting the relevance of the
cortical branch of the noradrenergic system in the modula-
tion of cortical activity includes pharmacological/clinical
data, the presence of cortical effective concentrations of NE
measured with microdialysis (van Veldhuizen et al., 1994,
Chiti and Teschemacher, 2007), and the sheer anatomical
extent of the cortical noradrenergic innervation to the neo-
cortex (Freedman et al., 1975; Gatter and Powell, 1977; Jones
and Moore, 1977; Jones et al., 1977; Waterhouse et al., 1983).

1.3.  Adrenergic receptors

The seminal pharmacological work of Ahlquist on the effects
of sympathomimetic compounds led to the classification of
adrenoceptors into the a and p families that is still valid to
date (Ahlquist, 1948). The discovery of guanosine 3-
phosphate (GTP)-binding proteins (G-proteins) further split
the o adrenoceptor family into the a; and a, subfamilies,
which in turn reclassified adrenoceptors into three receptor
families activating different intracellular cascades: 1) o
adrenoceptors («;-ARs), activating the phospholipid metabo-
lisms, leading to the activation of phospholipase C (PLC) and,
eventually, of the serine-threonine protein kinase C (PKC)
and phospholipid metabolism through G-proteins type Gg/11,

2) a, adrenoceptors (ap-ARs), which inhibit the production of
cyclic adenosine monophosphate (cAMP) by binding to
membrane-bound adenylyl cyclase through G;, and 3) three
families of p adrenoceptors (B-ARs), each promoting the
elevation of cAMP levels by activating a stimulatory G-
protein Gs.

The three families of adrenoceptors differ in affinity for
NE, their endogenous ligand. a,-ARs have the highest affinity,
of the order of tens of nanomolar (nM), «;-ARs have an
intermediate affinity (around 300 nM), while p-ARs have the
lowest affinity for NE (almost in the pM range, reviewed in
(Ramos and Arnsten, 2007). Different families and clones of
the same set of adrenoceptors are present and functional
throughout the CNS, including in the neocortex. As early
recognized by Ahlquist in the peripheral system, different
expression levels of the same type of ARs are associated with
different physiological functions, based on diverse cellular
properties triggered by similar molecular cascades in specific
areas throughout the CNS.

2. Acute noradrenergic modulation

The LC/NE system performs its global function by directly
modulating intrinsic neuronal function, and by altering
the communication between pairs of neurons by changing -
transiently or permanently - the weight of synaptic
transmission.

2.1. Intrinsic properties

K* channels are a well-known target for noradrenergic
modulation. Among them, TREK-2 channels (a two-pore
cationic, with high K* permeability) are activated by ay-
adrenoceptors, reducing glutamate release in the entorhinal
cortex (Xiao et al, 2009). Similarly, the cationic
hyperpolarization-activated current I, is also enhanced by
NE in the forebrain (McCormick et al., 1991). In other studies
NE induces a reduction in principal (pyramidal) cells K*
currents, similar to the effects of a number of light-
molecular weight neurotransmitters including acetylcholine
(Krnjevi¢ et al., 1971; Krnjevic, 1993), dopamine (Pedarzani
and Storm, 1995), serotonin (Segal, 1999) and histamine
(Martin et al.,, 2001), as found in seminal studies in the
hippocampus and later confirmed to be also present across
different cortical areas. Among the K* currents inhibited by
NE are the I, and the slow after hyper-polarization current
(SAHP) (Madison and Nicoll, 1982; Foehring et al., 1989;
McCormick et al., 1991, 1993; McCormick, 1993). A prominent
consequence of the elevation of NE levels is thus an increase
in spontaneous firing accompanied by a decrease in adapta-
tion (defined as the progressive decrease of neuronal firing
following a square current injection) either by direct mem-
brane depolarization or by reducing repolarizing currents.
Recently, an additional noradrenergic mechanism asso-
ciated with a decrease in K* conductance modulating synap-
tic function has been discovered using in vivo patch-clamp
recording in primates (Wang et al., 2011). The study found
that activation of a,-ARs in the prefrontal cortex (PFC)
decreases intracellular levels of cAMP, decreasing-in turn-an
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proper (Hu et al., 2007). Similarly, 10 uM NE increases AMPAR-
mediated currents in the visual cortex (Huang et al, 2012;
Salgado et al., 2012), although in the same preparation a
lower NE concentration (<1 pM), and also the specific activa-
tion of uy-ARs, decreases AMPAR-mediated currents (Salgado
et al., 2012).

Salgado et al., (2012) Kirkwood et al. (1999)
Salgado et al., 2012; Kirkwood et al., 1999.
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Effects of NE on inhibitory transmission

Cortical area

Kruglikov and Rudy (2008)

Salgado et al. (2011)

No effect on GABA release

a and B-AR

B-AR

10-50 pM of NE

Layer V

somatosensory cortex

Auditory cortex

Enhances inhibitory synaptic transmission

NE 20 pM or Isoproterenol 50 pM
NE 20 uM or clonidine 1 pM

Layer II/1II

Salgado et al. (2011)

Enhances inhibitory synaptic transmission
reduces inhibitory synaptic transmission

ap-AR
a-AR
pB-AR

Layer II/11I

Auditory cortex

Salgado et al. (2012)
Sessler et al. (1995)

Lei et al. (2007)

NE 20 uM or phenylephrine 1
Isoproterenol 10-100 uM

Layer II/III
Layer V

Auditory cortex

Enhances inhibitory synaptic transmission

Somatosensory cortex

Entorhinal cortex

Enhances inhibitory synaptic transmission
reduces inhibitory synaptic transmission

a-AR
n.a.

NE 100 uM or phenylephrine 100 uM

NE 20 uM
NE 20 uM

Layer II/11I

014)

Roychowdhury et al. (2
Roychowdhury et al. (2014)

Layer II/III
Layer V

Prefrontal cortex

Enhances inhibitory synaptic transmission

Prefrontal cortex

inhibitory transmission (Sessler et al., 1995; Salgado et al,,
2011, 2012). The parallel effects of a;- and p-AR activation on
excitatory and inhibitory transmission might represent a
mechanism to achieve larger synaptic strength while preser-
ving excitation/inhibition synaptic balance.

The rodent agranular prefrontal cortex also displays a
complex noradrenergic modulation of inhibitory currents,
such that while GABAergic currents evoked by electrical
stimulation of local inhibitory axons within layer 2/3 are
reduced by 20 pM NE, the same concentration of the mono-
amine increases GABAergic currents in pyramidal cells of the
output layer 5. Interestingly, NE selectively reduces excitatory
drive onto GABAergic interneurons in the prefrontal cortex
(Wang et al, 2013), suggestive of a negative feedback
mechanism to limit a NE-induced increase in inhibition.
Table 3 summarizes the effects of NE on GABAergic synaptic
transmission.

The inhibition of presynaptic Ca®* currents (Timmons
et al, 2004) may play similar roles in the noradrenergic-
induced decrease of both glutamatergic and GABAergic cur-
rents. On the contrary, the pharmacology and biophysics of
adrenoceptor-mediated enhancements in the excitability of
local GABAergic neurons (interneurons) (Kawaguchi and
Shindou, 1998) are consistent with noradrenergic-induced
increases in the intrinsic excitability of GABAergic interneur-
ons, although noradrenergic effects at the level of the
GABAergic axon terminal cannot be ruled out. Adrenoceptor
activation may be critical in the activation of GABAgR-
mediated signal, as indicated by the GABAgR-mediated
increase in GABA release monitored in the rat sensorimotor
cortex (Bennett et al., 1997, 1998). Besides its functional
(short- and long-term) effects on synaptic strength or intrin-
sic excitability, it is important to note that NE also induces
selective trophic effects in the neocortex (prefrontal) promot-
ing the adequate development of the neonatal GABAergic
system (Podkletnova et al., 2000).

2.4.  In vivo studies: sensory cortices

A combination of the acute effects on intrinsic neuronal
excitability and synaptic transmission may explain the vari-
ety of responses to NE detected with in vivo preparations and
direct sensory stimulation. Similar to cellular effects, remark-
able differences in noradrenergic modulation are shown in
the areas studied, including mostly different sensory cortices
and the PFC. In particular, the decrease in glutamate excita-
tory response and the enhancement of inhibitory GABAergic
responses mentioned in the previous sections may account
for a large amount of observations in in vivo preparations in
sensory and prefrontal cortices.

A number of studies have been conducted to determine
the effect of NE or LC activation on sensory areas to deter-
mine the noradrenergic regulation of arousal and sensory
input (Berridge and Waterhouse, 2003). In the auditory cortex,
a combination of short- and long-term effects of NE induces
changes in frequency selectivity in response to tones at a
frequency previously coupled with NE application (Manunta
and Edeline, 2004; Edeline et al., 2011). Such an effect may
contribute to the origin and consolidation of sparse encoding
of cortical auditory 'engrams' (Edeline, 2012). The effect of NE
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in the visual cortex is particularly puzzling. In fact, an overall
inhibitory action on neuronal firing patterns (Ego-Stengel
et al,, 2002) is not associated with unambiguous improve-
ment of function or increased signal-to-noise ratio as pro-
posed by several authors, for instance for the auditory cortex
(Edeline, 2012). Functional MRI data from experiments in
humans support the hypothesis that an enhanced noradre-
nergic tone can improve cortical coordination in visuo- motor
tasks (Grefkes et al., 2010).

Dose-dependent effects were detected by several early
studies showing that low doses of NE applied to sensory
neurons enhance both excitatory and inhibitory synaptic
inputs in the auditory and in the somatosensory cortices
(Foote et al., 1975; Waterhouse et al., 1980; Kossl and Vater,
1989), whereas intermediate or high doses typically suppress
neural activity (Armstrong-James and Fox, 1983). While a
mild elevation of NE levels appears to induce mostly an
enhancement of cortical excitation, consistent with the
phasic activation of LC neurons induced by highly salient
and arousing stimuli (Aston-jones and Bloom, 1981;
Abercrombie and Jacobs, 1988; Grant et al., 1988; Brun et al.,
1993), inhibitory effects induced by higher levels of NE have
also been shown on glutamate-evoked neuronal excitation in
sensory cortical slices, with an inhibitory influence associate
with previous strong PFC activation (Sara and Hervé-
Minvielle, 1995). An emerging property of noradrenergic
cortical modulation resembles a bell-shaped dependence on
the intensity of noradrenergic stimulation. An example of
this phenomenon is the firing frequency response to soma-
tosensory stimulation as a function of increasing frequency
of a train of pulses delivered to the LC (Devilbiss and
Waterhouse, 2004). A bell-shaped dependence on NE levels
may explain the results of the administration of methylphe-
nidate - a catecholamine reuptake blocker enhancing the
effects of NE (Drouin et al., 2007) - which increases the
intensity of the responses to weak stimuli but reduces
responses to strong stimuli. An alternative or additional
interpretation of these data can be given in terms of a
reduction of the dynamic range of somatosensory responses
(Drouin et al., 2007).

The interpretation of this large amount of experimental
data is complicated further by the large variability in extent
and direction of the NE effects between different cortical
units even within the same experimental settings. For instance,
NE application or LC stimulation may either increase or
decrease cortical firing rate of multi-unit recordings in
response to sensory stimulation (Waterhouse et al., 1980;
Devilbiss and Waterhouse, 2000, 2004; Hurley et al., 2004).

2.5.  In vivo studies: prefrontal cortex

LC neurons display tonic and phasic activation modes, the
latter associated with a number of PFC functions like beha-
vioral engagement, decision making and task-performance
optimization (Usher et al,, 1999; Aston-Jones and Cohen,
2005a, 2005b). Importantly, there is growing evidence that
the anatomical connection between LC and the PFC - or at
least some parts of it - may be reciprocal (Branchereau et al,,
1996), further corroborating the hypothesis that PFC activity
may elicit the release of NE. Anatomical data (Morrison et al.,

1982; Porrino and Goldman-Rakic, 1982) as well as in vivo
recordings in monkey LC and prefrontal cortices (Jodo et al,,
1998) suggest that not only the PFC is a major recipient of
noradrenergic modulation, but also that the activation of the
PFC stimulates LC activity, resulting in a feed-forward loop of
interactions. In particular, two frontal structures, namely the
orbitofrontal cortex (OFC) and the anterior cingulate cortex
(ACCQ), play critical roles in evaluating rewards (task related
utilities) and costs, respectively (Gold and Chrousos, 2002;
Bari and Robbins, 2013a, 2013b; Arnsten and Jin, 2014). The
OFC receives input from all sensory cortices, and is activated
by rewarding stimuli in various sensory modalities but not by
stimulus identification alone, nor by response preparation.
Notably, both the OFC and the ACC provide prominent direct
or indirect input to LC neurons, and are thought to be crucial
to drive the transitions between phasic and tonic modes in
the firing activity of LC neurons (Aston-Jones 2005; Aston-
Jones and Cohen 2005b). This evidence points to the PFC as a
key structure in the regulation of cortical noradrenergic
function.

Nowhere more than in the PFC is the heterogeneity of the
effects of NE more evident: the PFC displays differences in
noradrenergic effects between sub-regions, by the receptors
mediating its action, and by different behavioral states of the
subject/animal. For instance, levels of noradrenergic activa-
tion that impair attention-set shifting appear to improve
stop-signal performance (Newman et al., 2008), whereas, a5-
AR receptor activation facilitates PFC function in rodents and
monkeys. In fact, administration of ay-ARs agonists such as
clonidine, guanfacine or meditomide improves performance
on a variety of PFC-dependent working memory related tasks
(Franowicz and Arnsten, 1998), including delay response
(Arnsten et al.,, 1988), and delay alternation (Arnsten and
Goldman-Rakic, 1985). The effects are blocked by o, ARs
antagonists such as yohimbine, which in turn impairs work-
ing memory performance (Arnsten and Goldman-Rakic, 1985;
Li and Mei, 1994). The activation of p-ARs appears to have
little influence on the working memory functions of the
prefrontal cortex (Arnsten and Goldman-Rakic, 1985). Thus,
application of a,-AR, but not - or a;-AR antagonists, produces
a delay-related impairment in working memory performance
(Li and Mei, 1994). Facilitatory effects on working memory
performance by a,-ARs are particularly important under high
interference or distraction periods, where PFC function is
required for optimal performance (Arnsten and Contant,
1992).

A current tenet poses that most acute beneficial effects
mediated by NE on executive functions (like attention
improvement) are associated with activation of high-affinity
pre- or postsynaptic ap-ARs (Caetano et al., 2012), while the
activation of intermediate affinity PFC o4-ARs and/or lower
affinity p-ARs (and the related phospholipase C and adenylyl
cyclase cascades) would worsen the performance of most
executive functions (Ramos and Arnsten, 2007; Arnsten,
2009a, 2009b; Robbins and Arnsten, 2009). This effect could
be induced by inactivation of Na* conductance and conse-
quent failure of neuronal firing in the LC. Chemical similarity
and shared anatomical projections of dopamine and NE have
raised the question of the specificity of their PFC effects.
Recent studies on this topic (Chandler et al., 2014) suggest
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that in spite of their chemical structure resemblance and
partial overlap of their pharmacological effects, NE and
dopamine carry out both specific and complementary func-
tions in the PFC.

2.6. In vivo studies: anesthesia

In addition to modulating arousal (Aston-Jones et al., 2001;
Aston-Jones, 2005), recent evidence indicates that the LC-NE
cortical system can also influence the duration and properties
of anesthetic states. For example, LC-NE activation produces
a faster behavioral emergence from deep isoflurane anesthe-
sia by acting on B- or a;-ARs (Vazey and Aston-Jones, 2014).
Accordingly, blocking these receptors potentiated the anes-
thetic duration when delivered centrally or peripherally.
Thus, this finding reveals that different factors including
background LC-NE activation or noradrenergic medications
may affect the clinical responses to anesthetic agents. Inter-
estingly, an opposite noradrenergic effect is elicited by the a,-
AR agonist xylazine, commonly added to commercially avail-
able anesthetic mixture (ketamine-xylazine).

3. Long term effects of noradrenergic
modulation

3.1.  Adrenergic gating of cortical LTD and LTP

The idea that neuromodulation contributes to synaptic plasti-
city by controlling both the magnitude and polarity of change in
glutamatergic transmission is not new. As mentioned earlier, an
important role for NE in the induction of long-term plasticity
has been previously postulated (Brocher et al., 1992). NE,
released in the cortex in response to arousing or novel stimuli
(Berridge and Waterhouse, 2003), critically influences learning
and memory processes by activating different noradrenergic
receptor subtypes on cortical circuits, as shown in vivo in
different species (Berridge and Waterhouse, 2003; Ramos and
Amsten, 2007; Constantinople and Bruno, 2011). Most studies of
noradrenergic modulation of long-term plasticity have been
conducted in slices from the prefrontal cortex and brain areas
known to undergo long-term synaptic changes, like the visual
cortex and the hippocampus (Kato et al., 1991; Brocher et al.,
1992; Kirkwood et al., 1999). Bidirectional synaptic plasticity is
known to be strongly influenced by NE. Its noradrenergic
modulation has been widely studied in the cerebral cortex
(Nowicky et al, 1992; Kirkwood et al, 1999; Salgado et al,
2012; Laing and Bashir, 2014).

NE receptor activation has been proposed to influence synap-
tic plasticity by several putative mechanisms: either by directly
modulating NMDARs (induction of long-term potentiation/
depression, LTP/D) or-alternatively or in addition-by activating
kinases leading eventually to the insertion of AMPA receptors
into the postsynaptic membrane (“unsilencing” of “silent”
synapses, one of the proposed mechanisms for LTP) (Seol
et al., 2007; Perugini et al., 2012; Zhou et al., 2013). In this regard,
several studies show that, in addition to modulating the excit-
ability of cortical neurons (Carr et al., 2007; O'Donnell et al., 2012),
NE can lower the threshold for the induction of synaptic

plasticity at excitatory synapses (Seol et al., 2007; Huang et al,,
2012; Salgado et al.,, 2012).

Further evidence that NE participates in gating and
expression of long term synaptic plasticity, thereby modulat-
ing the activity of the entire cortical circuit comes from the
work of Arnsten and collaborators (Arnsten et al, 2012;
Huang et al,, 2012), indicating that NE has a critical role in
gating cortical LTD/P on perceptual learning and memory
(Pussinen et al., 1997; Riekkinen et al., 1997; Puumala et al,,
1998; Franowicz et al., 2002). Corroborating this hypothesis
are in vitro studies utilizing hippocampal slices, showing that
NE depletion reduces the capacity to express LTP (Stanton and
Sarvey, 1985), whereas the perfusion of NE agonists increases
LTP in the cortex and in the hippocampus (Stanton and
Sarvey, 1987; Nowicky et al., 1992; Salgado et al., 2012; Laing
and Bashir, 2014).

3.2. Different roles for a; and  adrenoceptors in long-term
synaptic plasticity

a;-ARs in the neocortex have been proposed to activate
protein phosphatases (Thomas et al., 1996) linked to the
induction of LTD (Lisman, 1989; Mulkey et al., 1993; Bear
and Malenka, 1994; Kirkwood et al., 1999) through a low range
of NMDA receptor stimulation (Kirkwood et al., 1999). The
induction of LTD in the visual cortex requires the activation
of the PLC pathway by NMDA receptors (Choi et al., 2005;
Trevifio et al., 2012). In fact, LTD occurs only when NMDA
receptors are activated in conjunction with the activation of
PLC via multiple neurotransmitter receptors coupled to Gq
proteins. The finding that NE can promote LTD induction of
glutamate synaptic transmission in the cortex both in vitro
(Choi et al., 2005) and ex vivo (Trevino et al., 2012), as well as
in the hippocampus in vitro, suggests that bidirectional
regulation of long-term synaptic plasticity might be the single
most important function of the cortical noradrenergic system
(Kirkwood et al., 1999; Scheiderer et al., 2004).

Further studies corroborate the hypothesis that o;-AR
agonists selectively enable LTD and suppress LTP (Salgado
et al,, 2012; Trevino et al., 2012), while p-AR agonist enable
LTP and suppress LTD (Huang et al., 2012). In general, the rate
of AR activation depends on the concentration of NE and its
different affinity for a;- and p-ARs (for a review see (Ramos
and Arnsten, 2007)). In this respect, our recent experimental
results in the visual cortex, obtained by preferentially activat-
ing a;-AR or B-AR (Salgado et al., 2012) support the notion that
NE can simultaneously recruit opposing synaptic plasticity
pathways (LTD vs. LTP) in spatially segregated circuits, and
that the effects of NE are dose-dependent and receptor-
specific. In addition, we found that the evoked excitatory
postsynaptic currents in layer II/III pyramidal cells were co-
sensitive to sequential application of selective a;-AR and f-AR
agonists, suggesting that both receptors are co-expressed in
pyramidal cells in the visual cortex (Salgado et al., 2012).
Moreover, a low concentration of NE enables a LTD-only
window at broad positive and negative delays, while high
concentrations of NE enable bidirectional LTP/LTD with a
spike-time dependent plasticity (STDP) protocol within very
narrow timing intervals (Salgado et al., 2012).
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Altogether, these data delineate an emerging picture for
the effect of NE the neocortex, in which a delicate balance
between the activation of a;-AR and f-AR determines the net
modulatory effect induced by NE on cortical circuits. For this
reason, p-AR activation gates long-term potentiation asso-
ciated with the classic adenylyl cyclase-cAMP/PKA, a key
regulator of synaptic plasticity in the hippocampus and the
neocortex (Frey et al., 1993). A similar phenomenon is present
in subcortical nuclei, where both «; and p-adrenoceptors play
a critical role in the storage of aversive memories like in the
basolateral nucleus of the amygdala (McGaugh et al., 2000;
Lazzaro et al, 2010). An important component of LTD/P
noradrenergic modulation could be the B-AR-dependent
reversible potentiation of NMDA currents, which triggers a
postsynaptic synergism associated with PKA activation and
increases in intracellular free Ca®* concentration.

Additional or alternative mechanisms could account for
the B-AR modulation of LTP (Ji, Cao, et al., 2008; Huang et al.,
2012). Early reports attributed the facilitation of LTP to
enhanced neural excitability of layer II/III cells (Brocher
et al, 1992). In the case of NMDAR-induced LTP (i.e. LTP
induced by adding NMDA to the extracellular medium) (Lee
et al., 2000; Malinow and Malenka, 2002), p-ARs induce Ca*?-
calmodulin kinase type II (CaMKII) autophosphorylation,
activation of CREB, and altered gene expression to promote
LTP and the formation of new memories in response to
behaviorally-relevant experiences (Hu et al., 2007; Havekes
et al.,, 2012; Zhou et al.,, 2013).

In conclusion, a;-ARs and p-ARs gate both acute and long-
term bidirectional synaptic plasticity in the neocortex by
producing opposing plastic effects in excitatory synapses in
the upper layers of the visual cortex: a;-ARs by decreasing
synaptic strength, while p-ARs by increasing synaptic strength
(Nowicky et al., 1992; Kirkwood et al., 1999; Seol et al., 2007;
Huang et al., 2012; Laing and Bashir, 2014).

3.3.  Functional implications of the dual regulation of long-
term synaptic plasticity

As discussed above, in vitro studies indicate that NE can act as
a permissive factor for the induction of NMDAR-dependent
LTP/LTD. In addition, there seems to be a pattern in the
regulation of bidirectional synaptic plasticity such that neu-
rotransmitter receptors linked to Gs proteins stimulate cAMP
production and promote LTP, while receptors coupled to Gq
proteins stimulate PLC and promote LTD (Seol et al., 2007;
Huang et al,, 2012; Salgado et al., 2012; Trevino et al., 2012).
Consistent with this view, in the visual cortex, NE actions by
activation of -AR may play a critical role in regulating ocular
dominance plasticity (Pettigrew and Kasamatsu, 1978;
Kasamatsu and Pettigrew, 1979; Bear and Singer, 1986;
Imamura and Kasamatsu, 1988; Mataga et al, 1992;
Muguruma et al., 1997). Accordingly, p-AR activation is asso-
ciated with enhancement of LTP in the neocortex (Nowicky
et al, 1992) and with memory facilitation (Gibbs and
Summers, 2000), while o;-AR are linked to LTD (Law-Tho
et al., 1993; Kirkwood et al., 1999; Gibbs and Summers, 2000;
Scheiderer et al., 2004; Mandal et al., 2010; Marzo et al., 2010;
Salgado et al., 2012; Trevifo et al., 2012).

We speculate that noradrenergic modulation of synaptic
transmission may work in two stages: first, NE would deter-
mine currently active brain circuits, participating critically to
the selection of the sensory content above neural background
noise to be represented in the working memory - possibly
through the activation of a-ARs; second, in case of further
reinforcement of their emotional valence, central representa-
tions and their associations would be ‘solidified’ in an
activity-dependent manner in long-term stores for future
retrieval. This second stage would require activation o;- and
B-ARs activation, and would follow stronger and/or longer LC
activation (Hopkins and Johnston, 1984; Brocher et al., 1992;
Pelletier et al., 1994; Bramham et al., 1997; Katsuki et al., 1997,
and Zorumski, 1999) through still undiscovered
activity-dependent mechanism like local modulation of NE
release by glutamate and/or GABA (Witkin et al., 2007; Sterley
et al., 2013).

Izumi

4, Conclusions
4.1. Conclusions

While we are still a long way from having an exhaustive
model of central noradrenergic function, current research is
consistent with the presence of at least two general nora-
drenergic central mechanisms. In case of moderate LC acti-
vation, one noradrenergic mechanism, spatially widespread,
mediated by activation of a,- and a;-ARs, appears to actively
suppress the spread of excitation by decreasing glutamatergic
AMPAR-mediated transmission and enhancing GABAaR-
mediated synaptic responses, causing a temporary inhibition
of neuronal activity. This scenario is supported by the anti-
epileptic effect of LC stimulation (Giorgi et al., 2008). In cases
of stronger LC activation, a different mechanism-mediated by
activation of «;- and p-ARs, may locally supersede the former
one, by consolidating biologically relevant representations
and their associations in long-term stores for future retrieval,
following intense and/or prolonged LC activation (Hopkins
and Johnston, 1984; Brocher et al., 1992; Pelletier et al., 1994;
Bramham et al, 1997; Katsuki et al., 1997; Izumi and
Zorumski, 1999). The two modalities of action would exist
simultaneously in different neighboring but functionally
segregated circuits, thus contributing to explain the wide
diversity of noradrenergic responses detected in in vivo mea-
surements, particularly in sensory areas (Manunta and
Edeline, 1998, 1999; Waterhouse et al.,, 1998; Devilbiss and
Waterhouse, 2000).

4.2, Future directions

Many gaps remain in our knowledge of the cortical function
of norepinephrine, as a comprehensive model of central
noradrenergic function is still unavailable. Studies of the
correlation between simultaneous neuronal activity in differ-
ent cortical/brain areas in relationship to LC activation, NE
levels, and the activation of different NE receptors have the
potential to reveal some of the missing information, perhaps
with a combination of novel techniques including electro-
physiology, Ca’"-imaging, functional magnetic resonance,
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and optogenetics. The contribution of cortical GABAergic
neurons to the LC/NE modulation is also an important field
of research that researchers are starting to investigate, and
that will shed light on the nature of cortical changes induced
by NE on cortical micro- and macro-circuit function.

Among many unanswered questions that need to be
addressed to advance our understanding of central noradre-
nergic pathophysiology: Is the release of NE a spatially
unitary process across its anatomical targets? If so: Are there
a number of brain states corresponding to increasing con-
centrations of brain NE paralleling the activation of progres-
sively lower affinity ARs (for instance, in the order: a,, ay,
a;+p)? If not: what are the spatial patterns of activation of the
anatomical targets of the LC/NE system? What are the
biological, anatomical, and biochemical factors that deter-
mine them? What are the extent and modality of the inter-
action between the LC/NE system and the other alarm and
stress-related systems like the cholinergic, the serotoniner-
gic, and the histaminergic systems? What is the relationship
between the temporal increase in NE level, the activation of
ARs with different affinity for their ligand, and the function of
local neuronal circuits? Does local circuit activity (local
release of glutamate and GABA) alter NE release in an
activity-dependent manner through modulation of presynap-
tic receptors on cortical noradrenergic fibers?

4.3. Theoretical models

Computational studies have already supported a role for NE
modulation of synaptic weights in the improvement of the
signal-to-noise ratio of synaptic transmission (Hasselmo
et al,, 1997), and in the involvement of synaptic plasticity in
decision-making tasks (Eckhoff et al., 2009; Silvetti et al,
2013). While advancements in the understanding of these
phenomena will only come from the experimental field, more
theoretical, computational, quantitative and qualitative stu-
dies will be needed in order to integrate the already large and
often difficult-to-interpret amount of pertinent experimental
data, perhaps benefitting from the comparatively larger set of
computational studies performed on the dominant role of the
NE precursor dopamine in decision-making (Doya, 2008; Lew
and Tseng, 2014).

4.4. Clinical relevance and expectations

The relevance of the LC/NE system to stress and the related
burden of neuropsychiatric disease suggests that an under-
standing of the function of the brain noradrenergic system
will not only yield a better view of the general operation of
the brain, but will also lead to substantial advances in clinical
and pharmacological tools for illnesses whose current treat-
ments are remarkably unsatisfactory, including, but not
limited to schizophrenic psychoses, anxiety disorders, and
mood disorders. Accurate information of the interaction
between NE and cortical circuits, along with an appreciation
of its role in stress will optimize the effectiveness of neurop-
sychiatric disorders treatments and minimize their potential
shortfalls.
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