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Abstract

Rationale The catecholamine innervation of the prefrontal
cortex controls attentional focus and inhibits inappropriate
behavioral responses. The mechanism of action with which
norepinephrine (NE) reuptake inhibitors modulate these
cognitive functions has not been fully investigated.
Objective We investigated the effect of systemic adminis-
tration of the NE reuptake blocker nortriptyline (NT) on
attention and impulsivity using an auditory sustained atten-
tion task. The task was designed to assess impulsive behav-
ior and the maintenance of attentional focus to an auditory
stimulus presented at interresponse time durations (IRT)
between 5 and 80 s.

Results NT (2.0 but not 3.0 mg/kg) improved sustained atten-
tion and decreased the percentage of premature responses
without changing their latency. To better understand the adren-
ergic component of NT action, we tested the effect of norad-
renergic receptor antagonists alone or together with NT. The
x,-receptor antagonist yohimbine, the «;-receptor antagonist
prazosin, or the 3-receptor antagonist propranolol alone did
not significantly affect attentive performance or premature
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responses. However, the beneficial effects of NT on sustained
attention and premature responses were attenuated by pretreat-
ment with either yohimbine or propranolol. On the contrary,
prazosin did not affect the NT-mediated improvement in sus-
tained attention.

Conclusions We conclude that sustained attention displays
an inverse U-shaped dependence on NT, mediated—at least
in part—by o,- and [3-adrenoceptors. We speculate that low
doses of NT improve performance by maximizing the phasic
release of NE, while higher doses of NT would elevate tonic
levels of NE, thus producing suboptimal levels of phasically
released NE.

Keywords Norepinephrine - Nortriptyline - Auditory -
Sustained attention - Impulsivity - Response latency - Rat -
Operant chamber - Alpha-2 adrenoceptors - Beta
adrenoceptors

Introduction

Attention deficit hyperactivity disorder (ADHD) is a
neurodevelopmental disorder characterized by impaired
behavioral inhibition (Barkley 1997; Brennan and Arnsten
2008), impulsive decision making, impaired working memory
with underlying distractibility, and hyperactivity (Arnsten et
al. 1996; Sagvolden 2006; Brennan and Arnsten 2008;
Heal et al. 2008) along with severe deficits in executive
function (Barkley 1997; Lovejoy et al. 1999; Sonuga-Barke
2005). Importantly, patients with ADHD or prefrontal lesions
show poor performance in working memory and behavioral
inhibition tasks (Arnsten and Li 2005). Adrenergic mecha-
nisms play a critical role in the onset of attention deficit in
patients with ADHD (Pliszka et al. 1996; Biederman and
Spencer 1999).
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In rodents, dysregulation of the central noradrenergic
(NE) system impairs attention performance, by increasing
distractibility, motor hyperactivity, and impulsivity (Carli et
al. 1983; Biederman and Spencer 1999; del Campo et al.
2011). In most mammalian species studied so far, NE neu-
rons from the locus coeruleus (LC) (Dahlstrdém and Fuxe
1964) project their axons to attention-processing areas like
the prefrontal cortex (PFC) (Arnsten and Goldman-Rakic
1984) and are in turn stimulated by glutamatergic projec-
tions from the medial PFC itself (Jodo and Aston-Jones
1997). Since optimal adrenergic transmission facilitates cog-
nitive processes like attention, learning, and working mem-
ory, whereas NE depletion results in attentive and working
memory deficits (Berridge and Waterhouse 2003; Ramos
and Amnsten 2007; Milstein et al. 2007; Tait et al. 2007),
NE is a likely candidate neurotransmitter for the control and
coordination of cognitive processes (Brennan and Arnsten
2008). While it is well accepted that a dysregulation of
NE-LC function might underlie not only ADHD, but also
other psychiatric conditions such as schizophrenia, drug
addiction, and depression (Arnsten et al. 1996; Arnsten
1998), the mechanisms and membrane receptors respon-
sible for NE control of attention and impulsivity are less
clear.

The treatment of attention deficit disorders with stimu-
lants like methylphenidate and amphetamine mixtures
raises multiple concerns due also to their addictive pro-
file (Wong et al. 2011; Zhu et al. 2011). The utilization
of new generation drugs did not substantially enhance
the efficacy profile also due to serious side effects com-
mon to all monoamine reuptake blockers. Tricyclics have
been successfully used in the treatment of depression
during the past two decades, while their attention-enhancer
properties have largely been overlooked. Many detrimental
properties of tricyclics derive from their antiserotoninergic
and antimuscarinic profile (Merriam 2000).

Nortriptyline (NT) is an FDA-approved tricyclic antide-
pressant with high affinity for the NE transporter and a
relatively low binding for serotoninergic and muscarinic
sites, whose mechanism of action as an attention-enhancer
has not been fully investigated. In the present study, we
sought to evaluate the effects and adrenergic components
of NT administration on the time span of attention and
impulsivity (Merriam 2000). We used a modified version
of the five-choice serial reaction time test (5-CSRTT, a test
for assessing the behavioral symptoms of ADHD), devel-
oped by Robbins (2002). Our version uses auditory stimuli
instead of the visual ones used in the 5-CSRTT, to quantify
sustained attention and impulsivity under variable intertrial
conditions. Also, contrary to the 5-CSRTT, longer interres-
ponse time durations were used to quantify the attention
time span of the compounds used. We found that a low—
but not a high—dose of NT improves sustained attention
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and decreases premature responses without changing
their latency, and that «,- and (3-adrenergic blockers
hamper the effect of NT.

Method

Animals Male Sprague—Dawley rats (Charles River, USA),
weighing 250-300 g at the beginning of the experiment
were used. The animals were housed three per cage and
maintained on a 12-h light/dark cycle schedule. Rats were
food restricted and kept around 85% of their natural body
weight throughout the experiment using standard rat chow.
Water was available ad libitum during the entire study. All
animals performed at a stable baseline level before they
were given drug treatments. All methods and procedures
were in accordance with guidelines set by National Institutes
of Health for Ethical Treatment of Animals and received the
approval of the University Committee on Animal Research
at the University of Texas at Dallas (IACUC # 08-01).

Drugs Nortriptyline was obtained from Sigma (St. Louis,
MO, USA), and yohimbine, propranolol, and prazosin were
obtained from Tocris (Ellisville, MO, USA). All drugs were
dissolved in 0.9% NaCl and in a volume of 1 ml/kg body-
weight and administered intraperitoneally (i.p.). All the
drugs were administered 30 min prior to testing session.
Optimal doses were determined based on previous studies
(Dekeyne et al. 2002; Haapalinna et al. 1997; Mishima et al.
2002; Zhang et al. 2009) and a limited number of scout
experiments. Each drug trial was the average of five meas-
urements on the same animal, tested no more than once a
day, with the number of animals for each experiment spec-
ified in “Results.” About one third of the animals were used
multiple times, for up to three injections (including vehicle),
with at least 1-week interval between each injection, with
randomized drug and dose administration to eliminate bias.
During this interval, rats were continued to be trained to
ensure they were performing at a steady baseline level and
that proper washout of the drug has occurred.

Apparatus Experiments were conducted in operant condi-
tioning boxes placed in sound-attenuated chambers (ENV-
018 V; 63.5%x63.5%x40.64 cm; Med Associates, Vermont,
USA). Each box was equipped with a food pellet receptacle
(ENV-203; Med Associates, Vermont, USA) and a pellet
dispenser, which delivered 45-mg food pellets. A retractable
lever (ENV-112 cm; Med Associates, Vermont, USA) was
located on the left of the receptacle positioned 7.62 cm
above the grid floor. Water was available through the spout
of a water bottle located on the right of the pellet receptacle.
A small general purpose loudspeaker was placed behind the
lever. The system was controlled using a personal computer
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through a MATLAB program connected to the peripherals
by a digital controller (USB 1024LS; Measurement Com-
puting, MA, USA).

Habituation Rats were trained to press the lever, with the
lever positioned 7.5 cm above the grid floor, for obtaining
food pellets (Sessions et al. 1976; Cole and Michaleski
1986). Habituation took place once a day, five times a week
(Monday—Friday). Once the rats ate all the food pellets
within a session, which lasted for 60 min, training pro-
ceeded to the next stage.

Sustained attention training

Preliminary training The rats were trained to respond to
each lever presentation only after the delivery of a target
sound (0.25 s at 10,000 Hz, 80—83 dB) before the withdraw-
al of the lever and were rewarded by a food pellet (45 mg).
Levers were withdrawn if there was a response before the
sound, followed by a time-out period (longer wait time
before the generation of next trial) with no food pellet
delivery. There was also no food reward if the rat did not
press the lever at all. Animals were trained until they
achieved an accuracy level between 70% and 80% within
a 60-min daily session for at least five sessions. In the next
phase, the target sound was fixed at 5-s interval after the
lever was drawn out. A window of 3 s (maximum response
time, MaxRT) was provided for lever press, after the stim-
ulus was presented. The fixed interval was increased every
time the rats performed at a success level between 70% and
80% at each stage. Correspondingly, the MaxRT was reduced
gradually to 1 s to reinforce attention.

Test procedure Our test procedure was designed, accord-
ing to a definition of sustained attention (Bushnell 1998;
Mirsky and Duncan 2001), and using an auditory task
with slightly longer intervals than that used in the 5-
CSRTT, which has been extensively used as an assay in
attention studies.

A similar two-choice version of this task has also been
extensively used to test the effect of other neurotransmitter
systems on attention (Grilly and Gowans 1988; McGaughy
and Sarter 1995). In the final phase of the sustained attention
protocol, the testing session was divided into 5 blocks of
100 trials for 60 min. Each block consisted of presentation
of the target sound (80-83 dB over a ~60-63-dB back-
ground) with interresponse time durations (IRT) of 5, 10,
20, 40, and 80 s. Equal number of each of the five IRTs were
presented in random sequence during the 100-trial session.
The intertrial interval (separation between consecutive trials,
ITI) was fixed at 5 s irrespective of when the lever was
pressed. The test session ended when either the 60 min or
100 trials had been completed (Fig. 1).
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Fig. 1 Schematic representation of sustained attention protocol. Test-
ing session consisted of 5 blocks of 20 trials each for 60 min. Each
block consisted of presentation of the target sound after an interres-
ponse time (/R7) selected randomly with a flat distribution among 5,
10, 20, 40, and 80 s. Animals had a 1-s time window to lower the lever
after the tone. In case of premature or absence of response the lever
was withdrawn with no food reward. The intertrial interval (separation
between consecutive trials, ITI) was fixed at 5 s irrespective of when
the lever was pressed. The test session ended when either the 60 min or
100 trials had been completed

Data analysis Similar to the 5-CSRTT, a response or lever
press before the presentation of the target sound (auditory
stimulus) was recorded as anticipation failure (premature
responses). Failure to press the lever at all, in any particular
trial, was recorded as ignore. Successful trials (correct
responses) were lever presses after delivery of the target
sound, before withdrawal of the lever, and were rewarded
by the delivery of a food pellet.

The percentage of premature, correct, and ignore
responses for the total number of trials in every IRT was
calculated and averaged for every animal. Analysis of the
percentage of premature, correct, and ignore responses was
performed separately. We used one-way ANOVA to assess
statistical significance of the different treatments at each
IRT, followed by Tukey HSD comparison post-hoc test.
Student's #-test was used to determine statistical significance
between different conditions for the sustained attention time
span and hold-off time. Repeated measurements were used
whenever applicable. A criterion of p<0.05 was accepted as
indicative of significant difference.

Results
Correct responses

Treatment with i.p. administration of vehicle or with two
different doses of NT (2 and 3 mg/kg) revealed signifi-
cant effects of treatment at all IRTs except 5 and 10 s,
with one-way ANOVA analysis. A post-hoc analysis
revealed a significant effect (p<0.05) of the lower dose
of NT (2.0 mg/kg) compared to vehicle on correct
responses at all IRTs except 5 and 10 s. However, a
higher concentration of NT (3.0 mg/kg) produced no
significant changes on the percentage of correct responses at
any IRT (Fig. 2a).

@ Springer



Psychopharmacology

w— saline

100 == NT (2.0 mg/kg)
§- - mmm NT (3.0 mg/kg)
";’ 80 *
@ ¥
2 : *
s 60
@
€ 4 T
-
3 1
s 20 : T
o
5]

5 10 20 40 80
IRT (s)

Fig. 2 Effects of NE drugs on correct responses. a NT increases the
number of correct responses at 2 mg/kg at all IRTs exceptat 5 and 10 s
(n=8), while at 3 mg/kg does not affect performance (n==8). b Coadmin-
istration of NT with either yohimbine or propranolol produces a

As a control experiment, as well as to assess a possi-
ble role of tonic adrenoceptors activation, we tested the
effect of each noradrenergic blocker alone. The adminis-
tration of the «,-receptor antagonist yohimbine (2.0 mg/
kg), of the «-receptor antagonist, prazosin (1.0 mg/kg),
or of the (-receptor antagonist propranolol (2.0 mg/kg)
failed to produce any significant changes on sustained
attention.

In order to assess a possible role of adrenergic recep-
tors in the behavioral properties of NT, we injected nor-
adrenergic blockers together with the attention-enhancing
dose of NT (2 mg/kg). Treatment with NT alone or in
combination with adrenergic blockers revealed signifi-
cant effects at all IRTs. A post-hoc analysis indicated that
coadministration of NT (2.0 mg/kg) and yohimbine
(2.0 mg/kg) significantly reduced the percent of correct
responses at all IRTs (p<0.05, n=8, Fig. 2b), while
coadministration of prazosin (1.0 mg/kg) with NT did
not affect performance and produced no significant changes
in correct responses (Fig. 2b). Finally, coinjection of pro-
pranolol (2.0 mg/kg) along with NT (2.0 mg/kg) signifi-
cantly reduced the percent of correct responses at all IRTs
(Fig. 2b).
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Fig. 3 Effects of NE drugs on impulsivity. a NT (2 mg/kg) signifi-
cantly decreases the number of premature responses at all IRTs except
at 5 and 10 s (n=8), indicating a decrease in impulsivity. No change is
induced by administration of 3 mg/kg NT (n=8). b Coadministration
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significant decrease in the percent of correct responses for all IRTs (n=
8, each). Coadministration of NT with prazosin does not produce any
significant effects on any IRT (n=8). *p<0.05; **p<0.01; ***p<0.001,
significance levels

Premature responses

One assessment of impulsive behavior was taken as the
percentage of premature responses before presentation of
the auditory stimulus (see the “Method” section). In general,
as expected, the percent of premature responses increased at
longer IRTs. Treatment with vehicle or with the two doses of
NT revealed significant effects of treatment at all IRTs
except 5 and 10 s, with one-way ANOVA analysis. Com-
plementing the effect on the correct responses, post-hoc
analysis showed that 2.0 mg/kg NT resulted in a significant
decrease (p<0.05, n=8) in the percent of premature
responses for all IRTs except 5 and 10 s (Fig. 3a), while at
a higher dose (3.0 mg/kg) NT failed to produce any effects
(Fig. 3a).

Administration of yohimbine, prazosin, or propranolol
alone did not have any effect on the percent of prema-
ture responses for any IRT. On the contrary, treatment
with NT alone or in combination with adrenergic block-
ers revealed significant effects on premature response at
all IRTs except in 5 s. Post-hoc analysis showed that
coadministration of NT with yohimbine or propranolol
increased the percent of premature responses compared
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of NT and yohimbine or propranolol increases the percent of premature
responses at all IRTs except at 5 s (n=8, each). Coadministration of NT
and prazosin does not affect the percent of premature responses on any
IRT (n=8). *p<0.05, **p<0.01, and ***p<0.001
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with NT alone for all IRTs except in 5 s (p<0.05, for
yohimbine, p<0.05, for propranolol, n=8 for each ex-
periment, Fig. 3b), while, simultaneous administration of
prazosin and NT produced no significant changes in the
percent of premature responses compared with NT alone
(Fig. 3b).

An independent assessment of impulsivity was given by
the latency of premature responses, for each IRT. Adminis-
tration of NT 2 or 3 mg/kg failed to affect the premature
response latency for all IRTs, as shown in Table 1. Prema-
ture response latency was unaffected by all adrenergic
antagonists tested, at all IRTs.

Ignore responses

Failure to make a response on any trial was recorded as
“ignore” (see the “Method” section). For all trials, the
percent of ignore was always less than 5%. Administra-
tion of either doses of nortriptyline (2.0 and 3.0 mg/kg)
did not produce any significant changes in the percent
of ignore responses when compared to vehicle. Similar-
ly, coadministration of nortriptyline with adrenergic
blockers did not significantly affect the percent of ignore
responses.

Time course of sustained attention and impulsivity

The percentage of correct performance and of premature
responses as a function of the IRTs suitably fitted single
exponential curves (example in Fig. 4a, b for correct and
premature responses respectively for saline and NT
2 mg/kg). We arbitrarily defined as the sustained attention
time span, the t of the exponential fit using the following

expression:
Correct performance = f(At; 4,75) = A - exp[—At/ 73]

where, 4 is the maximum performance, 7, is a sustained
attention time span, and At is the independent time variable
(IRT=A¢=5, 10, 20, 40, and 80 s)

Table 1 Impulsivity: latency of premature responses

Similarly, we defined a hold-off time with the help of the
following expressions:

Percentage premature responses = f(At; 4, 7i) = A(1 — exp[—At/zi])

where, 4 is a maximum percentage premature responses, t;
is a hold-off time, and Ar is still the independent time
variable (Ar=5, 10, 20, 40, and 80s).

A least square algorithm was used to determine the
optimal parameters. Administration of NT (2.0 mg/kg)
produced a significant increase in sustained attention span
from 7,=25.15+4.19 s in control to 7,=60.41+8.41 s
(Student's ¢ test, p<0.01, df=7; n=8). Administration of
NT (2.0 mg/kg) also prolonged the hold-off time from ;=
28.034+3.92 s in control to 7;=80.57+£10.98 s (Student's
t test, p<0.001, df=7; n=8 rats). We summarized the
corresponding results in Table 2.

Discussion

Our results show for the first time that the NE reuptake
blocker NT approximately doubles the span of auditory
attention and decreases premature responses, in an ;- and
[3-(but not «;-) adrenoceptors-dependent manner.

Inverse U-shaped dependence of performance on NT

The LC-NE system is known to play an important role in the
regulation of cognitive functions including sustained atten-
tion, impulse control, and voluntary behavior (Dalley et al.
2004; Arnsten and Li 2005). NT is known to decrease NE
reuptake by directly blocking the NE transporter at norad-
renergic terminals (Schubert et al. 1970; Frazer 2001). In-
terestingly, NT improved attention and decreased premature
response at a dose of 2.0 mg/kg, yet, failed to produce
similar effects at a higher dose of 3.0 mg/kg. This result
was unlikely due to the design of the experiment, in which
doses and drug administration were randomized, or to the

Treatment S5s 10s 20's 40 s 80 s n
Saline 2.7+0.2 5.5+0.5 10.0+0.8 16.7+1.4 25.0+2.9 8
Nortriptyline (2.0 mg/kg) 2.34+0.2 5.4+0.6 11.2£1.0 19.7+2.7 31.2+4.2 8
Nortriptyline (3.0 mg/kg) 2.3+04 4.4+0.8 10.8+1.3 16.0+2.0 20.3+£5.3 8
Yohimbine 3.0+0.1 5.2+0.1 7.7+1.1 10.4+1.9 14.7+0.7 5
Prazosin 2.6+0.6 4.5+1.2 10.5+1.9 16.1+4.0 17.3£3.9 5
Propranolol 2.94+0.3 5.4+0.2 8.6+£1.0 12.3+1.8 14.8+4.6 5

The latency of premature responses was calculated as the time between lever presentation and lever presses occurred before the delivery of the
auditory cue. Averages are calculated for each IRT. None of the drugs used, changed the latency of premature responses at any IRT (unpaired

Student’s t-test)
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Fig. 4 NT prolongs time constants for sustained attention and impul-
sivity. a The experimental percentage success of the sustained attention
task as a function of the IRT fits an exponential decay curve (contin-
uous lines) describing the percentage success rate as (percent correct

activation of a startle response, which is evoked by
10 dB louder stimuli (Floody and Kilgard 2007;
Dagnino-Subiabre et al. 2009), while 80-85-dB sounds
as used in our experiment evokes a non-startle response
(Valsamis and Schmid 2011). The dependence on NT
dose is described by a Yerkes-Dodson inverted U-
shaped relationship, consistent with a performance cor-
relating with the phasic release of NE. In particular, a
low dose of NT might optimize the phasic release of
NE, at an intermediate level of LC activity, while a
higher dose of NT could increase tonic but impair phasic
release of NE (Aston-Jones et al. 1999; Aston-Jones et
al. 2007), bringing performance levels to or below base-
line. In line with this interpretation, low doses of stimu-
lants like methylphenidate, which blocks the reuptake of
NE and other neuromodulators, have been shown to
improve cognitive performance in rats by preserving
the phasic discharge and producing only a moderate
suppression of tonic LC discharge activity (Devilbiss and
Berridge 20006).

Table 2 Time span for sustained attention and impulsivity

Treatment Ts (8) (sustained 7 (s) (hold-off time)
attention span)

Saline 25.1+4.2 28.0+3.9

NT (2 mg/kg) 60.4+8.4** 80.6£11.0%**

NT (3 mg/kg) 27.3+4.9 37.2+10.5

NT + yohimbine vs. NT 9.342.3%%* 16.5+4.7%%*

NT + prazosin vs. NT 40.4+12.7 41.7+20.6

NT + propranolol vs. NT 31.4+£3.5%* 37.3+£4.9%%*

7, and 7; (left and right columns, respectively), defined as in Fig. 4,
represent the duration of sustained attention and impulsivity derived from
exponential fits with experimental data using a least square algorithm
*p<0.05; **p<0.01; ***p<0.001, significant differences with saline
injections; Student’s t-test, df=7, n=8
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response)=constantxe "®"?_ Values of the corresponding time con-
stants (7) are reported in Table 2. b Impulsivity was measured as the
time constant from the expression=constantx (1—e "®"?) Compare
with data in Table 2

Our results are in agreement with several previous studies
indicating that NE reuptake inhibitors including NT, desi-
pramine, reboxetine, or atomoxetine improve performance
in attention tasks only at intermediate but not high doses
(O’Donnell and Seiden 1983; Dekeyne et al. 2002; Navarra
et al. 2008; Gamo et al. 2010). NT has also been proven to
be effective in reducing the symptoms in children with
ADHD (Prince et al. 2000), associated with some minor
side effects (Wilens et al. 1993; Prince et al. 2000).

Involvement of adrenergic receptors

The absence of behavioral effects following the administra-
tion of any of the adrenoceptor blockers suggests that in
basal conditions NE does not exert a critical role in the task.
On the contrary, the behavioral performance at or below
baseline after the coadministration of the effective dose of
NT together with yohimbine or propranolol indicates that
the effects of NT are mediated, at least in part, by either or
both &, and/or 3, but not «;-adrenoceptors. o;-Adrenocep-
tors probably do not play a major role in sustained attention,
as indicated by the absence of any effects on performance or
impulsivity following the administration of the o,-adrener-
gic receptor antagonist prazosin by itself and by its failure to
affect the NT-induced attention improvement. Prazosin
alone does not affect premature and correct responses in 5-
CSRTT, although it reduces a reboxetine-induced increase
in accuracy but not the corresponding decrease in impulsiv-
ity (Liu et al. 2009). Other studies also showed that prazo-
sin, alone, does not change impulsive behavior in rodents
(Koskinen et al. 2003; Bruno and Hess 2006), but, similar to
our results, does not affect impulsivity when administered
with the NE reuptake blocker methylphenidate (Milstein et
al. 2008). This body of literature generally corroborates our
results suggesting a modest role of o-adrenoceptors in the
modulation of attention under normal conditions.



Psychopharmacology

x,-Receptors

The early discovery that «,-adrenoceptor agonists or antag-
onists respectively decrease or increase the release of NE
(Taube et al. 1977; Dubocovich 1984) initially suggested
their inhibitory function in presynaptic terminals (Dubocovich
1984). Later studies though revealed their widespread cortical
distribution in different synaptic sites (Aoki et al. 1998).
Activation of postsynaptic «,-receptors enhances PFC
function and, under optimal conditions, mediates attention
and working memory in the same brain area (Arnsten and
Goldman-Rakic 1985; Franowicz and Amsten 1998; Ramos
and Amsten 2007).

The yohimbine sensitivity of the NT-induced perfor-
mance increase, and its failure to affect performance per
se, suggests the involvement of postsynaptic o,-receptors
in sustained attention. Our results are consistent with the
effects of idazoxan, another «,-adrenergic receptor antago-
nist which, when applied alone, does not affect perfor-
mance, but antagonizes the effects of the NE reuptake
blockers desipramine (Zhang et al. 2009) and atomoxetine,
(Gamo et al. 2010). Regardless of the cellular interpretation,
our data indicate that the mechanisms of action of NT
and yohimbine interfere with each other. We cannot
exclude complex interactions like an inadequate refilling
of synaptic vesicles in adrenergic terminals overwhelmed by
simultaneous blockage of the NE reuptaker and of presynaptic
x,-autoreceptors.

[3-Receptors

Our data showed that the administration of propranolol
alone did not affect performance or impulsivity. A similar
result was reported by Bruno and Hess (2006) on an impul-
sivity assay in an ADHD model (coloboma mice), and in a
delayed response task propranolol also failed to affect per-
formance (Arnsten and Goldman-Rakic 1985; Li and Mei
1994). On the contrary, the coadministration of propranolol
significantly reduced the efficacy of NT on performance,
indicating a role for (3-adrenoceptors in sustained attention.
Our results are consistent with a report of the involvement of
[3 receptors—along with o,-receptors—on an attention task
in the 5-CSRTT (Pattij et al. 2011) and corroborates numer-
ous previous studies supporting a role for (3-receptors in
cognitive flexibility (Pitman et al. 2002; Vaiva et al. 2003;
Alexander et al. 2007; Donovan 2010).

Effect of NT on impulsivity

We evaluated impulsivity with two separate assessments:
the percentage of the premature responses and their laten-
cies. Temporal analysis of the percentage of premature
responses at different IRTs clearly showed that the optimal

dose of NT is also effective in decreasing impulsivity, pro-
ducing longer values for 7;. However, the analysis of the
latencies for the premature responses—which can be con-
sidered an independent assessment of impulsivity—did not
show any effect of NT, nor of any of the adrenergic blockers
tested, suggesting the possibility that the NT-dependent
increase in performance is not necessarily caused by a
change in impulsivity. This interpretation is in partial agree-
ment with the observations that adrenergic blockers do not
vary motor activity in control animals (Bruno and Hess
2006), while the increase in attention co-occurring with
stimulants is not only not associated with a decrease in
impulsivity but even with its increase (Navarra et al. 2008).

Conclusions

Our study showed that NT produces an inverted U-shape
profile of attentive performance, with an effective dose
that significantly improved the span of attention in an
auditory attention task. Pharmacological tests further sug-
gested the involvement of both o,- and (3- but not oy-
adrenoceptors in the NT modulation. Our data suggest that
NT is a potentially valuable pharmacological tool among
NE reuptake inhibitors, particularly in the improvement of
attention and inhibitory control in depressed patients with
attention impairments.
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